Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hui Wu, ${ }^{\mathbf{a} *}$ Zhou Xu, ${ }^{\text {a }}$ Yu Wan, ${ }^{\text {a }}$

 Yongmin Liang ${ }^{\text {b }}$ and Kaibei $\mathbf{Y u}^{\text {c }}$${ }^{\text {a }}$ Department of Chemistry, Xuzhou Normal University, Xuzhou, Jiangsu 221116, People's Republic of China, ${ }^{\mathbf{b}}$ Department of Chemistry, Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Lanzhou, Gansu, 730000, People's Republic of China, and ${ }^{\text {c }}$ Chengdu Institute of Organic Chemistry, Chinese Academy of Science, Chengdu, Sichuan 610041, People's Republic of China

Correspondence e-mail:
wuhui72@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.037$
$w R$ factor $=0.083$
Data-to-parameter ratio $=14.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(3-Chlorophenyl)chroman-4-one

The title compound, $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClO}_{2}$, was synthesized from 3-(3-chlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one. The pyrone ring adopts a half-chair conformation.

Received 4 April 2005 Accepted 9 May 2005 Online 14 May 2005

Comment

Flavanones represent important structures of a wide variety of natural products exhibiting various interesting biological activities (Heinisch \& Holzer, 1991 Salvatore et al., 1998). It is also found from biological examination that flavanones, such as 2-(2,3-dimethoxyphenyl)chroman-4-one, which we have reported (Wu et al., 2005), has good molluscicidal activity. Thus, the synthesis of flavanones and their derivatives is of great interest in organic chemistry. We report here the crystal structure of the title compound, (I).

(I)

In (I), the pyrone ring adopts a half-chair conformation (Fig. 1). Atom C9 deviates from the plane defined by atoms C6/C8/C9/C1/O1 by 0.679 (3) \AA. The dihedral angle between the $\mathrm{C} 8 / \mathrm{C} 9 / \mathrm{O} 1$ and $\mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{O} 1$ planes is $52.13(14)^{\circ}$ and the dihedral angle between the $\mathrm{C} 10-\mathrm{C} 15$ and $\mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{O} 1$ planes is $78.72(6)^{\circ}$. The bond lengths, angles and torsion angles in (I) show normal values (Table 1).

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
The molecular packing of (I). H atoms have been omitted.

Experimental

The title compound was synthesized from 3-(3-chlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one ($4 \mathrm{mmol}, 1.03 \mathrm{~g}$) and acetic acid $(0.05 \mathrm{~g})$ in ethanol solution $(12 \mathrm{ml})$ at 353 K over a period of 12 h (yield 43%, m.p. 360-362 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a solution in 95% ethanol.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClO}_{2} \\
& M_{r}=258.69 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=11.979(2) \AA \\
& b=5.202(1) \AA \\
& c=19.773(3) \AA \\
& \beta=92.22(2) \AA \\
& V=1231.1(4) \AA^{\circ} \\
& Z=4
\end{aligned}
$$

Data collection

Siemens P4 diffractometer	$R_{\text {int }}=0.018$
ω scans	$\theta_{\max }=25.5^{\circ}$
Absorption correction: multi-scan	$h=0 \rightarrow 14$
\quad SHELXTL; Sheldrick, 1997)	$k=0 \rightarrow 6$
$T_{\min }=0.853, T_{\max }=0.882$	$l=-23 \rightarrow 23$
2790 measured reflections	3 standard reflections
2296 independent reflections	every 97 reflections
1314 reflections with $I>2 \sigma(I)$	intensity decay: 1.8%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.083$
$S=0.87$
2296 reflections
164 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0361 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.14 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.20$ e \AA^{-3}
Extinction correction: SHELXTL
Extinction coefficient: 0.0140 (14)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cl}-\mathrm{C} 14$	$1.745(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.470(3)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.366(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.505(3)$
$\mathrm{O} 1-\mathrm{C} 9$	$1.450(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.508(2)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.402(2)$		
			$119.90(18)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 9$	$113.58(14)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$114.88(17)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$117.26(18)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$111.08(17)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$	$122.39(18)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	
			$175.19(19)$
$\mathrm{C} 9-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$-154.59(17)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 2$	$-3.3(3)$
$\mathrm{C} 9-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$	$24.0(3)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-28.6(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$176.57(18)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-56.2(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-2.1(3)$	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 8$	$179.61(17)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-175.45(17)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-177.41(15)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$6.9(3)$	$\mathrm{Cl}-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 10$	-

All H atoms were placed in calculated positions and treated using a riding model, with $\mathrm{C}-\mathrm{H}$ distances of $0.93-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997); program(s) used to solve structure: $S H E L X T L$; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Research Project (grant No. JH03-038) and 'Hi-Technology Development Project' (grant No. 03KJD150213) of Jiangsu Province for financial support.

References

Heinisch, G. \& Holzer, W. (1991). J. Heterocycl. Chem. 28, 1047-1050.
Salvatore, M. J., King, A. B., Graham A. C., Onishi, H. R., Bartizal, K. F., Abruzzo, G. K., Gill, C. J., Ramjit, H. G., Pitzenberger, S. M. \& Witherup, K. M. (1998). J. Nat. Prod. 61, 640-642.

Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Wu, H., Xu, Z., Zhou, J. \& Liang, Y.-M. (2005). Acta Cryst. E61, o1095-o1096.

